【产品简介】
“刊寻—学术期刊投稿分析系统”构建规范可信的期刊母体知识库,精准揭示期刊的基本信息、选题方向、发文主题、学术影响力、核心收录等多元化信息。系统有效结合先进的机器学习算法进行智能化期刊匹配,为用户遴选出与论文主题高度契合的期刊,并提供多维投稿分析和期刊发表预测,全面辅助用户投稿决策。此外,通过与期刊编辑部对接合作,致力于为投稿作者提供正规、高效的投稿途径,帮助作者有效提升投稿效率。
【服务网址】
https://kx.wanfangdata.com.cn/
试用账号:账户:cd88cd 密码:cd@12@
背景介绍
随着信息技术的飞速发展,学术期刊的数字化、网络化已成为必然趋势。然而,网络环境的复杂性也为广大学者和期刊出版机构带来了新的挑战。为了应对这一挑战,我们倾力打造了万方刊寻,并正式面向市场用户开放,旨在为学术研究者提供一个安全、高效、便捷的投稿平台。
平台介绍
万方刊寻深入洞察学术期刊投稿领域所面临的问题,如:假冒网站造成的稿件流失、期刊声誉受损,以及学者在寻找正规投稿途径时的时间和精力消耗。为了解决这些问题,万方数据推出全新的刊寻智能选刊系统,通过构建规范可信的期刊母体知识库,精准揭示期刊的基本信息、选题方向、发文主题、学术影响力、核心收录等多元化信息。系统有效结合先进的机器学习算法进行智能化期刊匹配,为用户遴选出与论文主题高度契合的期刊,并提供多维投稿分析和期刊发表预测,全面辅助用户投稿决策。此外,通过与期刊编辑部对接合作,致力于为投稿作者提供正规、高效的投稿途径,帮助作者有效提升投稿效率。
服务优势
1. 规范化期刊母体知识库
通过与期刊编辑部对接合作,精准呈现期刊的基本信息、选题方向、发文主题、学术影响力、核心收录等多元化信息,并提供正规化的投稿途径。
2. 智能化期刊匹配算法
通过先进的机器学习算法,为用户遴选出与论文主题高度契合的期刊,并提供多维投稿分析和预测,全面辅助用户投稿决策。
3. 多维度特色分析指标
推出一致性指数、活跃指数、学科融合指数、传播及时指数等特色分析指标,从多个维度提供期刊的匹配分数和影响力分析。
4. 个性化投稿预测报告
从录取难易程度、论文主题契合度、期刊影响力、刊物正规性分析等维度进行投稿分析,并进行发表时间预测,以及支持对多个刊物的对比分析。